A Consistent Immersed Finite Element Method for the Interface Elasticity Problems
نویسندگان
چکیده
منابع مشابه
An Immersed Finite Element Method for Elasticity Equations with Interfaces
Abstract. The immersed finite element method based on a uniform Cartesian mesh has been developed for the linear elasticity equations with discontinuous coefficients across an interface in this paper. The interface does not have to be aligned with the mesh. The main idea is to modify the basis function over those triangles in which the interface cuts through so that the natural interface condit...
متن کاملPartially Penalized Immersed Finite Element Methods For Elliptic Interface Problems
This article presents new immersed finite element (IFE) methods for solving the popular second order elliptic interface problems on structured Cartesian meshes even if the involved interfaces have nontrivial geometries. These IFE methods contain extra stabilization terms introduced only at interface edges for penalizing the discontinuity in IFE functions. With the enhanced stability due to the ...
متن کاملSuperconvergence of immersed finite element methods for interface problems
In this article, we study superconvergence properties of immersed finite element methods for the one dimensional elliptic interface problem. Due to low global regularity of the solution, classical superconvergence phenomenon for finite element methods disappears unless the discontinuity of the coefficient is resolved by partition. We show that immersed finite element solutions inherit all desir...
متن کاملPartially Penalized Immersed Finite Element Methods for Parabolic Interface Problems
We present partially penalized immersed finite element methods for solving parabolic interface problems on Cartesian meshes. Typical semi-discrete and fully discrete schemes are discussed. Error estimates in an energy norm are derived. Numerical examples are provided to support theoretical analysis.
متن کاملA partially penalty immersed Crouzeix-Raviart finite element method for interface problems
The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematical Physics
سال: 2016
ISSN: 1687-9120,1687-9139
DOI: 10.1155/2016/3292487